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Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes.
This feature is typically measured by the clustering coefficient �CC�. The CC, originally introduced for binary,
undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to
the case of �binary and weighted� directed networks and we compute its expected value for random graphs. We
distinguish between CCs that count all directed triangles in the graph �independently of the direction of their
edges� and CCs that only consider particular types of directed triangles �e.g., cycles�. The main concepts are
illustrated by employing empirical data on world-trade flows.

DOI: 10.1103/PhysRevE.76.026107 PACS number�s�: 89.75.�k, 89.65.Gh, 87.23.Ge, 05.70.Ln

Networked structures emerge almost ubiquitously in com-
plex systems. Examples include the Internet and the WWW,
airline connections, scientific collaborations and citations,
trade and labor-market contacts, friendship and other social
relationships, business relations and research and develop-
ment partnerships, cellular, ecological, and neural networks
�1–3�.

The majority of such “real-world” networks have been
shown to display structural properties that are neither those
of a random graph �4�, nor those of regular lattices. For ex-
ample, many empirically observed networks are small
worlds �5,6�. These networks are simultaneously character-
ized by two features �7�. First, as happens for random graphs,
their diameter �8� increases only logarithmically with the
number of nodes. This means that, even if the network is
very large, any two seemingly unrelated nodes can reach
each other in a few steps. Second, as happens in lattices,
small-world networks are highly clustered, i.e., any two
neighbors of a given node have a probability of being them-
selves neighbors which is much larger than in random
graphs.

Network clustering is a well-known concept in sociology,
where notions such as “cliques” and “transitive triads” have
been widely employed �9,10�. For example, friendship net-
works are typically highly clustered �i.e., they display high
cliquishness� because any two friends of a person are very
likely to be friends.

The tendency of a network to form tightly connected
neighborhoods �more than in the random uncorrelated case�
can be measured by the clustering coefficient �CC�, see
�11,12�. The idea is very simple. Consider a binary, undi-
rected network �BUN� described by the graph G= �N ,A�,
where N is the number of the nodes and A= �aij� is the N
�N adjacency matrix, whose generic element aij =1 if and
only if there is an edge connecting nodes i and j �i.e., if they
are neighbors� and zero otherwise. Since the network is un-
directed, A is symmetric �13�. For any given node i, let di be
its degree, i.e., the number of i’s neighbors. The extent to
which i’s neighborhood is clustered can be measured by the
percentage of pairs of i’s neighbors that are themselves

neighbors, i.e., by the ratio between the number of triangles
in the graph G with i as one vertex �labeled as ti� and the
number of all possible triangles that i could have formed
�that is, Ti=di�di−1� /2� �14�. It is easy to see that the CC for
node i in this case reads

Ci�A� =

1
2� j�i �h��i,j� aijaihajh

1
2di�di − 1�

=
�A3�ii

di�di − 1�
, �1�

where �A3�ii is the ith element of the main diagonal of A3

=A A A. Each product aijaihajh is meant to count whether a
triangle exists or not around i. Notice that the order of sub-
scripts is irrelevant, as all entries in A are symmetric. Of
course, Ci� �0,1�. The overall �network-wide� CC for the
graph G is then obtained by averaging Ci over the N nodes,
i.e., C=N−1�i=1

N Ci. In the case of a random graph where each
link is in place with probability p� �0,1�, one has that
E�C�= p �E stands for the expectation operator�.

Binary networks treat all edges present in G as they were
completely homogeneous. More recently, scholars have be-
come increasingly aware of the fact that real networks ex-
hibit a relevant heterogeneity in the capacity and intensity of
their connections �15–20�. Allowing for this heterogeneity
might be crucial to better understand the architecture of com-
plex networks. In order to incorporate such a previously ne-
glected feature, each edge ij present in G �i.e., such that aij
=1� is assigned a value wij �0 proportional to the weight of
that link in the network. For example, weights can account
for the amount of trade volumes exchanged between coun-
tries �as a fraction of their gross domestic product�, the num-
ber of passengers traveling between airports, the traffic be-
tween two Internet nodes, the number of emails exchanged
between pairs of individuals, etc. Without loss of generality,
we can suppose that wij � �0,1� �21�. A weighted undirected
network �WUN� is thus characterized by its N�N symmetric
weight matrix W= �wij�, where wii=0, all i. Many network
measures developed for BUNs have a direct counterpart in
WUNs. For example, the concept of node degree can be
replaced by that of node strength �15�:

si = �
j�i

wij . �2�
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For more complicated measures, however, extensions to
WUNs are not straightforward. To generalize the CC of node
i to WUNs, one has indeed to take into account the weight
associated to edges in the neighborhood of i. There are many
ways to do that �22�. For example, suppose that a triangle ihj
is in place. One might then consider only weights of the
edges ih and ij �15�. Alternatively, one might employ the
weights of all the edges in the triangle. In turn, the total
contribution of a triangle can be defined as the geometric
mean of its weights �23� or simply as the product among
them �24–27�. In what follows, we will focus on the exten-
sion of the CC to WUNs originally introduced in �23�:

C̃i�W� =
�1/2�� j�i �h��i,j� wij

1/3wih
1/3wjh

1/3

�1/2�di�di − 1�
=

�W�1/3��ii
3

di�di − 1�
,

�3�

where we define W�1/k�= �wij
1/k�, i.e., the matrix obtained from

W by taking the kth root of each entry. As discussed in �22�,
the measure C̃i ranges in �0,1� and reduces to Ci when
weights become binary. Furthermore, it takes into account
weights of all edges in a triangle �but does not consider
weights not participating in any triangle� and is invariant to

weight permutation for one triangle. Notice that C̃i=1 only if
the neighborhood of i actually contains all possible triangles
that can be formed and each edge participating in these tri-
angles has unit �maximum� weight. Again, one can define the

overall clustering coefficient for WUNs as C̃=N−1�i=1
N C̃i.

In this paper we discuss extensions of the CC for BUNs
and WUNs �Eqs. �1� and �3�� to the case of directed net-
works. It is well known that many real-world complex net-
works involve nonmutual relationships, which imply non-
symmetric adjacency or weight matrices. For instance, trade
volumes between countries �28–30� are implicitly directional
relations, as the export from country i to country j is typi-
cally different from the export from country j to country i
�i.e., imports of i from j�. If such networks are symmetrized
�e.g., by averaging imports and exports of country i�, one
could possibly underestimate important aspects of their net-
work architecture.

Alternative extensions of the CC to weighted or directed
networks have been recently introduced in the literature on
“network motifs” �31�. As mentioned, �23� generalizes the
CC to weighted—and possibly directed—networks. Simi-
larly, �32� computes the recurrence of all types of three-node
connected subgraphs in a variety of real-world binary di-
rected networks from biochemistry, neurobiology, ecology,
and engineering. However, the weighted CC in �23� does not
explicitly discriminate between different directed triangles
�cf. Fig. 1�, while �32� does not allow for a weighted analy-
sis. This work attempts to bridge the two latter approaches
and presents a unifying framework where, in addition to the
measures already discussed in �23,32�, one is able to �i� ex-
plicitly account for directed and weighted links; and �ii� de-
fine a weighted, directed version of the CC for any type of
triangle pattern �i.e., three-node connected subgraph�. To
compute such coefficients, we shall employ the actual and

potential number of directed-triangle patterns of any given
type.

Preliminaries. In directed networks, edges are oriented
and neighboring relations are not necessarily symmetric. In
the case of binary directed networks �BDNs�, we define the
in-degree of node i as the number of edges pointing towards
i �i.e., inward edges�. The out-degree of node i is accordingly
defined as the number of edges originating from i �i.e., out-
ward edges�. Formally,

di
in = �

j�i

aji = �AT�i1 , �4�

di
out = �

j�i

aij = �A�i1 , �5�

where AT is the transpose of A, �A�i stands for the ith row of
A, and 1 is the N-dimensional column vector �1,1 , . . . ,1�T.
The total degree of a node is simply the sum of its in- and
out-degree:
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FIG. 1. Binary directed graphs. All eight different triangles with
node i as one vertex. Within each triangle is reported the product of
the form a��a��a�� that works as indicator of that triangle in the
network.
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di
tot = di

in + di
out = �AT + A�i1 . �6�

Finally, provided that no self-interactions are present, the
number of bilateral edges between i and its neighbors �i.e.,
the number of nodes j for which both an edge i→ j and an
edge j→ i exist� is computed as

di
↔ = �

j�i

aijaji = Aii
2 . �7�

It is easy to see that in BUNs one has di=di
tot−di

↔.
The above measures can be easily extended to weighted

directed networks �WDNs�, by considering in-, out-, and
total-strength �see Eq. �2��.

Binary directed networks. We begin by introducing the
most general extension of the CC to BDNs, which considers
all possible directed triangles formed by each node, no mat-
ter the directions of their edges. Consider node i. When
edges are directed, i can generate up to eight different tri-
angles with any pair of neighbors �33�. Any product of the
form aijaihajh captures one particular triangle, see Fig. 1 for
an illustration.

The CC for node i �Ci
D� in BDNs can be thus defined �like

in BUNs� as the ratio between all directed triangles actually
formed by i �ti

D� and the number of all possible triangles that
i could form �Ti

D�. Therefore

Ci
D�A� =

ti
D

Ti
D =

�1/2�� j �h
�aij + aji��aih + ahi��ajh + ahj�

�di
tot�di

tot − 1� − 2di
↔�

=
�A + AT�ii

3

2�di
tot�di

tot − 1� − 2di
↔�

, �8�

where �also in what follows� sums span over j� i and h
� �i , j�. In the first line of Eq. �8�, the numerator of the
fraction is equal to ti

D, as it simply counts all possible prod-
ucts of the form aijaihajh �cf. Fig. 1�. To see that Ti

D

=di
tot�di

tot−1�−2di
↔, notice that i can be possibly linked to a

maximum of di
tot�di

tot−1� /2 pairs of neighbors and with each
pair can form up to two triangles �as the edge between them
can be oriented in two ways�. This leaves us with di

tot�di
tot

−1� triangles. However, this number also counts “false” tri-
angles formed by i and by a pair of directed edges pointing
to the same node, e.g., i→ j and j→ i. There are di

↔ of such
occurrences for node i, and for each of them we have
wrongly counted two “false” triangles. Therefore by sub-
tracting 2di

↔ from the above number we get Ti
D. This implies

that Ci
D� �0,1�. The overall CC for BDNs is defined as CD

=N−1�i=1
N Ci

D.
The CC in Eq. �8� has two nice properties. First, if A is

symmetric, then Ci
D�A�=Ci�A�, i.e., it reduces to Eq. �1�

when networks are undirected. To see this, note that if A is
symmetric then di

tot=2di and di
↔=di. Hence

Ci
D�A� =

�2A�ii
3

2�2di�2di − 1� − 2di�
=

�A�ii
3

di�di − 1�
= Ci�A� . �9�

Second, the expected value of Ci
D in random graphs,

where each edge is independently in place with probability
p� �0,1� �i.e., aij are i.i.d. Bernoulli �p� random variables�,

is still p �as happens for BUNs�. Indeed, the expected value
of ti

D is simply 4�N−1��N−2�p3. Furthermore, note that di
in

�di
out�bin�N−1, p� and di

tot�bin(2�N−1� , p). Hence
E�di

tot�di
tot−1��=E�di

tot�2−E�di
tot�=2�N−1��2N−3�p2. Simi-

larly, E�di
↔�= �N−1�p2, which implies that E�Ti

D�=4�N−1�
��N−2�p2 and finally that E�Ci

D�= p.
Weighted directed networks. The CC for BDNs defined

above can be easily extended to weighted graphs by replac-
ing the number of directed triangles actually formed by i �ti

D�
with its weighted counterpart t̃i

D. Given Eq. �3�, t̃i
D can be

thus computed by substituting A with W�1/3�. Hence

C̃i
D�W� =

t̃i
D

Ti
D =

�W�1/3� + �WT��1/3��ii
3

2�di
tot�di

tot − 1� − 2di
↔�

. �10�

Note that when the graph is binary �W=A�, then �W��1/3�

=W=A. Hence C̃i
D�A�=Ci

D�A�. Moreover, if W is a symmet-

ric weight matrix, then the numerator of C̃i
D�W� becomes

�2W�1/3��3. By combining this result with the denominator in

Eq. �9�, one has that C̃i
D�W�= C̃i�W� for any symmetric W

�34�.
To compute expected values of C̃i

D in random graphs, sup-
pose that weights are drawn using the following two-step
algorithm. First, assume that any directed edge i→ j is in
place with probability p �independently across all possible
directed edges�. Second, let the weight wij of any existing
directed edge �i.e., in place after the first step� be drawn from
an independent random variable uniformly distributed over
�0,1� �35�. In this case, one has that E�wij�1/3= 3p

4 . It easily
follows that for this class of random weighted graphs:

E�C̃i
D� = E�C̃i� = 	3

4

3

p � p . �11�

The overall CC for WDN is again defined as C̃D

=N−1�i=1
N C̃i

D.
Clustering and patterns of directed triangles. The CCs for

BDNs and WDNs defined above treat all possible directed
triangles as they were the same, i.e., if directions were irrel-

evant. In other words, both CD and C̃D operate a symmetri-
zation of the underlying directed graph in such a way that the
original asymmetric adjacency �respectively, weight� matrix
A �respectively, W� is replaced by the symmetric matrix A
+AT �respectively, W�1/3�+ �WT��1/3��. This means that in the
transformed graph, all directed edges are now bilateral. Fur-
thermore, in binary �respectively, weighted� graphs, edges
that were already bilateral count as two �respectively, receive
a weight equal to the sum of the weights of the two directed
edges raised to 1/3�.

However, in directed graphs, triangles with edges pointing
in different directions have a completely different interpreta-
tion in terms of the resulting flow pattern. To put it differ-
ently, they account for different network motifs. Looking
again at Fig. 1, it is possible to single out four patterns of
directed triangles from i’s perspective. These are �i� cycle,
when there exists a cyclical relation among i and any two of
its neighbors �i→ j→h→ i, or vice versa�; �ii� middleman,
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when one of i’s neighbors �say j� both holds an outward edge
to a third neighbor �say h� and uses i as a medium to reach h
in two steps �36�; �iii� in, where i holds two inward edges;
and �iv� out, where i holds two outward edges.

When one is interested in measuring clustering in directed
networks, it is important to separately account for each of the
above patterns. This can be done by building a CC for each
pattern �in both BDNs and WDNs�. As usual, each CC is
defined as the ratio between the number of triangles of that
pattern actually formed by i and the total number of triangles
of that pattern that i can possibly form. Each CC will then
convey information about clustering of each different pattern
within tightly connected directed neighborhoods. In order to
do that, we recall that the maximum number of all possible
directed triangles that i can form �irrespective of their pat-
tern� can be decomposed as

Ti
D = di

tot�di
tot − 1� − 2di

↔

= �di
indi

out − di
↔� + �di

indi
out − di

↔� + �di
in�di

in − 1��

+ �di
out�di

out − 1�� = T1
D + T2

D + T3
D + T4

D. �12�

Let �Ti
cyc ,Ti

mid ,Ti
in ,Ti

out� be the maximum number of cycles,
middlemen, ins, and outs that i can form. Inspection suggests
that Ti

cyc=T1
D, Ti

mid=T2
D, Ti

in=T3
D, and Ti

out=T4
D. To see why,

consider, for example, Ti
cyc. In that pattern type �see Fig. 1,

top panels�, node i is characterized by one inward link and
one outward link. The maximum number of such patterns is
given by di

indi
out. Again, this also counts “false” triangles,

formed by i and by a pair of directed edges pointing to and
from a same node j. Therefore one has to subtract di

↔ to get
Ti

cyc. Incidentally, notice that Ti
cyc=Ti

mid. The reason why this
is indeed the case becomes evident when one compares the
top and the bottom pairs of triangle patterns in Fig. 1. In-
deed, cycles and middlemen only differ from the orientation
of the link connecting the partners of the reference node �i�,
which does not affect the maximum number of triangles that
i can form.

In order to count all actual triangles formed by i, we no-
tice that

ti
D = �A + AT�ii = �A3�ii + �AATA�ii + �ATA2�ii + �A2AT�ii

= t1
D + t2

D + t3
D + t4

D. �13�

By letting �ti
cyc , ti

mid , ti
in , ti

out� be the actual number of cycles,
middlemen, ins, and outs formed by i, simple algebra reveals
that ti

cyc= t1
D, ti

mid= t2
D, ti

in= t3
D, and ti

out= t4
D. For example,

ti
cyc =

1

2�
j

�
h

�aijajhahi + aihahjaji�

=
1

2
A�i�A

TA�i� = A�i�AA�i� = A�ii�
3 . �14�

Similarly,

ti
mid =

1

2�
j

�
h

�aijahjahi + aihajhaji�

=
1

2
�A�i�

T A�AT��i� + A�i�A
TA�i�� = A�i�A

TA�i� = �AATA��ii�.

�15�

Notice that although Ti
cyc=Ti

mid, now ti
cyc� ti

mid as long as A is
asymmetric.

Summing up, we can define a CC for each pattern as
follows:

Ci
� =

ti
�

Ti
� , �16�

where ���= �cyc ,mid , in ,out�.
In the case of weighted networks, it is straightforward to

replace ti
� with its weighted counterpart t̃i

�, where the adja-
cency matrix A has been replaced by W�1/3�. We then accord-
ingly define

C̃i
� =

t̃i
�

Ti
� , �17�

where ���= �cyc ,mid , in ,out�. To summarize the above dis-
cussion, we report in Table I a taxonomy of all possible
triangles with related measures for BDNs and WDNs.

Two remarks on Eqs. �16� and �17� are in order. First, note
that, for ���= �cyc ,mid , in ,out�, �i� when A is symmetric,

Ci
�=Ci; �ii� when W is binary, C̃i

�=Ci
� ; �iii� when W is sym-

metric, C̃i
�= C̃i. Second, in random graphs one still has that

E�Ci
��= p and E�C̃i

��= � 3
4

�3p.

Finally, network-wide clustering coefficients C� and C̃�

can be built for any triangle pattern �cyc ,mid , in ,out� by
averaging individual coefficients over the N nodes.

These aggregate coefficients can be employed to compare
the relevance of, say, cyclelike clustering among different
networks, but not to assess the relative importance of cycle-
like and middlemenlike clustering within a single network.
In order to perform within-network comparisons, one can
instead compute the fraction of all triangles that belong to
the pattern ���� �cyc ,mid , in ,out� in i’s neighborhood, that
is,

f i
� =

ti
�

ti
D , f̃ i

� =
t̃i
�

t̃i
D

, �18�

and then averaging them out over all nodes. Since for

���� �cyc ,mid , in ,out� we have that ��f i
�=1 and �� f̃ i

�=1,
the above coefficients can be used to measure the contribu-
tion of each single pattern to the overall clustering coeffi-
cient. Notice that, in the case of BDNs, f i

� coefficients simply
recover the recurrence of each pattern in the network, as
computed in �32�.

Empirical application. The above concepts can be mean-
ingfully illustrated in the case of the empirical network de-
scribing world trade among countries �i.e., the “world trade
network,” WTN in what follows�. Source data are provided
by �37� and records, for any given year, imports and exports
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from and to a large sample of countries �all figures are ex-
pressed in current U.S. dollars�. Here, for the sake of expo-
sition, we focus on the year 2000 only �38�. We choose to
build an edge between any two countries in the WTN if there
is a nonzero trade between them and we assume that edge
directions follow the flow of commodities. Let xij be i’s ex-
ports to country j and mji be imports of j from i. In principle,
xij =mji. Unfortunately, due to measurement problems, this is
not the case in the database. In order to minimize this prob-

lem, we will focus here on “adjusted exports” defined as
eij = �xij +mji� /2 and we build a directed edge from country i
to country j if and only if country i’s adjusted exports to
country j are positive. Thus the generic entry of the adja-
cency matrix aij is equal to 1 if and only if eij �0 �and 0
otherwise�. Notice that, in general, eij�eji. In order to
weight edges, adjusted exports can be tentatively employed.
However, exporting levels are trivially correlated with the
“size” of exporting and importing countries, as measured,

TABLE I. A taxonomy of the patterns of directed triangles and their associated clustering coefficients. For each pattern, we show the
graph associated to it, the expression that counts how many triangles of that pattern are actually present in the neighborhood of i �ti

��, the
maximum number of such triangles that i can form �Ti

��, for �= �cyc ,mid , in ,out ,D�, and the associated clustering coefficients for BDNs and

WDNs. Note that in the last column Ŵ=W�1/3�= �wij
1/3�.
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FIG. 3. WTN: Overall directed clustering coefficient vs total-
degree in the binary case. Axes are in log10 scale.
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e.g., by their gross domestic products �GDPs�. To avoid such
a problem, we first assign each existing edge a weight equal
to w̃ij =eij /GDPi, where GDPi is country i’s GDP expressed
in 2000 U.S. dollars. Second, we define the actual weight
matrix as

W = �wij� =
w̃ij

maxh,k=1
N �w̃hk�

, �19�

to have weights in the unit interval. Each entry wij tells us
the extent to which country i �as a seller� depends on j �as a
buyer�. The out-strength of country i �i.e., i’s exports-to-GDP
ratio� will then measure how i �as a seller� depends on the
rest of the world �as a buyer�. Similarly, in-strengths denote
how dependent is the rest of the world on i �as a buyer� �39�.

The resulting WTN comprises N=187 nodes/countries
and 20 105 directed edges. The density is therefore very high
��=0.5780�. As expected, the binary WTN is substantially
symmetric: there is a 0.9978 correlation �40� between in- and
out-degree �see Fig. 2� and the �nonscaled� S measure intro-
duced in �41� is close to zero �0.003 97�, indicating that the
underlying binary graph is almost undirected.

Thus, in the binary case, there seems to be no value added
in performing a directed analysis: since A is almost symmet-
ric, we should not detect any significant differences among
clustering measures for our four directed triangle patterns.
Indeed, we find that CD=0.8125, while Ccyc=0.8123, Cmid

=0.8127, Cin=0.8142, Cout=0.8108 �42�. The fact that CD

�� also indicates that the binary �directed� WTN is more
clustered than it would be if it were random �with density
�=0.5780�. Finally, Fig 3 shows that individual CCs �Ci

D�
are negatively correlated with total degree �di

tot�, the correla-
tion coefficient being −0.4102. This implies that countries
with few �respectively, many� partners tend to form very
�respectively, poorly� connected clusters of trade relation-
ships.

The binary network does not take into account the hetero-
geneity of export flows carried by edges in the WTN. Indeed,
when one performs a WDN analysis on the WTN, the picture
changes completely. To begin with, note that weights wij are
on average very weak �0.0009� but quite heterogeneous
�weight standard deviation is 0.0073�. In fact, weight distri-
bution is very skewed and displays a characteristic power-
law shape �see Fig. 4� with a slope around −2.
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FIG. 4. WTN: Log-log plot of the weight distribution.
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The matrix W is now weakly asymmetric. As Fig. 5
shows, in- and out-strengths are almost not correlated: the
correlation coefficient is 0.09 �not significantly different
from zero�. Nevertheless, the �not-scaled� S measure is still
very low �0.1118�, suggesting that an undirected analysis
would still be appropriate. We will see now that, even in this
borderline case, a weighted directed analysis of CCs pro-
vides a picture which is much more precise than �and some-
times at odds with� that emerging in the binary case.

First, unlike in the binary case, the overall average CC
�C̃D� is now very low �0.0007� and significantly smaller than
its expected value �0.2438� in random graphs �with the same
density �=0.5780, but independently, uniformly distributed
weights�. Notice, however, that C̃D is almost equal to its
expected value in directed graphs characterized by the same
topology �as defined by the adjacency matrix A� but the same
weight distribution �as defined by the nonzero elements in
W�, which turns out to be equal to 0.0005 �with a standard
deviation of 0.0001� �43�.

Second, C̃i
D is now positively correlated with total

strength �the correlation coefficient is 0.6421�, cf. Fig. 6.
This means that, when weight heterogeneity is taken into
account, the implication we have drawn in the binary case is
reversed: countries that are more strongly connected tend to

form more strongly connected trade circles. Indeed, C̃i
D ex-

hibits an almost null correlation with total degree, see Fig. 7.
Third, despite that the weighted network is only weakly

asymmetric, there is a substantial difference in the way clus-

tering is coupled with exports and imports. C̃i
D is almost

uncorrelated with in-strength �Fig. 8�, while a positive slope

is still in place when C̃i
D is plotted against out-strength.

Hence the low clustering level of weakly connected coun-
tries seems to depend mainly on their weakly exporting re-
lationships.

Fourth, weighted CC coefficients associated to different

triangle patterns now show a relevant heterogeneity: C̃�

range from 0.0004 �cycles� to 0.0013 �out�. In addition,
cycles only account for 18% of all triangles, while the other
three patterns account for about 27% each. Therefore coun-
tries tend to form less frequently trade cycles, possibly be-
cause they involve economic redundancies.

Finally, CCs for different triangle patterns correlate with

strength measures in different ways. While C̃i
cyc, C̃i

mid, and

C̃i
in are positive and strongly correlated with total strength,

C̃i
out is not; see Fig. 9: countries tend to maintain exporting

relationships with connected pairs of partners independently
of the total strength of their trade circles.

Concluding remarks. In this paper, we have extended the
clustering coefficient �CC�, originally proposed for binary
and weighted undirected graphs, to directed networks. We
have introduced different versions of the CC for both binary
and weighted networks. These coefficients count the number
of triangles in the neighborhood of any node independently
of their actual pattern of directed edges. In order to take edge
directionality fully into account, we have defined specific
CCs for each particular directed triangle pattern �cycles,
middlemen, ins, and outs�. For any CC, we have also pro-
vided its expected value in random graphs. Finally, we have
illustrated the use of directed CCs by employing world trade
network �WTN� data. Our exercises show that directed CCs
can describe the main clustering features of the underlying
WTN’s architecture much better than their undirected coun-
terparts.

Thanks to Javier Reyes, Stefano Schiavo, and an anony-
mous referee, for their helpful comments.
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